Fabrication of Microfluidic Valves Using a Hydrogel Molding Method
نویسندگان
چکیده
In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.
منابع مشابه
Design and fabrication of chemically robust three-dimensional microfluidic valves.
A current problem in microfluidics is that poly(dimethylsiloxane) (PDMS), used to fabricate many microfluidic devices, is not compatible with most organic solvents. Fluorinated compounds are more chemically robust than PDMS but, historically, it has been nearly impossible to construct valves out of them by multilayer soft lithography (MSL) due to the difficulty of bonding layers made of "non-st...
متن کاملHigh-pressure on-chip mechanical valves for thermoplastic microfluidic devices.
A facile method enabling the integration of elastomeric valves into rigid thermoplastic microfluidic chips is described. The valves employ discrete plugs of elastomeric polydimethylsiloxane (PDMS) integrated into the thermoplastic substrate and actuated using a threaded stainless steel needle. The fabrication process takes advantage of poly(ethylene glycol) (PEG) as a sacrificial molding materi...
متن کاملMonolithic microfabricated valves and pumps by multilayer soft lithography.
Soft lithography is an alternative to silicon-based micromachining that uses replica molding of nontraditional elastomeric materials to fabricate stamps and microfluidic channels. We describe here an extension to the soft lithography paradigm, multilayer soft lithography, with which devices consisting of multiple layers may be fabricated from soft materials. We used this technique to build acti...
متن کاملMultiple-Step Injection Molding for Fibrin-Based Tissue-Engineered Heart Valves
Heart valves are elaborate and highly heterogeneous structures of the circulatory system. Despite the well accepted relationship between the structural and mechanical anisotropy and the optimal function of the valves, most approaches to create tissue-engineered heart valves (TEHVs) do not try to mimic this complexity and rely on one homogenous combination of cells and materials for the whole co...
متن کاملLarge-Scale Integration of All-Glass Valves on a Microfluidic Device
In this study, we developed a method for fabricating a microfluidic device with integrated large-scale all-glass valves and constructed an actuator system to control each of the valves on the device. Such a microfluidic device has advantages that allow its use in various fields, including physical, chemical, and biochemical analyses and syntheses. However, it is inefficient and difficult to int...
متن کامل